탄소중립은 더 이상 선택이 아닌 필수가 되었다. 세계 각국이 온실가스 배출을 줄이기 위해 노력하는 가운데, 인공지능(AI)은 새로운 해결책으로 떠오르고 있다. 과거에는 환경 보호와 기술 발전이 서로 충돌하는 목표로 여겨졌지만, 이제 AI는 효율과 지속가능성을 동시에 추구하는 ‘녹색 혁신의 동반자’가 되고 있다. 대표적인 사례로는 스마트팩토리의 에너지 최적화가 있다. AI는 생산 설비의 센서 데이터를 분석해 불필요한 전력 사용을 줄이고, 공정별 에너지 효율을 실시간으로 조정한다. 또 다른 예로 구글의 데이터센터는 AI 제어 시스템을 통해 냉각 효율을 개선해 전력 사용을 30% 이상 절감했다. 마이크로소프트는 AI 기반 예측 모델로 재생에너지 발전량을 예측해 탄소 배출을 최소화하고 있다. 농업 분야에서도 AI는 기후 데이터 분석을 통해 비료 사용량을 줄이고, 탄소 흡수량이 높은 작물 재배 전략을 제시한다. 또한, 기후테크 스타트업들은 AI를 활용해 탄소배출 추적 플랫폼을 개발하며, 기업의 탄소 회계와 감축 전략 수립을 돕고 있다. 결국 탄소중립을 향한 여정에서 AI는 단순한 기술이 아니라, 데이터 기반의 환경 의사결정 도구로 자리 잡고 있다. 앞으로의 과제는 A
지속가능한 제조는 단순히 환경을 보호하기 위한 선택이 아니라, 기업의 생존 전략이 되고 있다. 자원 고갈, 기후 변화, 환경 규제가 강화되는 시대에 효율적이고 친환경적인 생산관리는 기업 경쟁력을 좌우한다. 이제 생산성만 높이는 시대는 끝났고, 에너지 절감, 탄소 저감, 자원 효율화를 동시에 달성하는 ‘지속가능한 생산관리’가 핵심 과제가 되었다. 친환경 생산관리는 크게 세 가지 방향으로 추진된다. 첫째, 에너지 효율화이다. 설비 운전 조건을 최적화하고, 불필요한 공정 가동을 줄여 전력 소비를 최소화한다. 둘째, 자원 순환(Resource Circluation) 이다. 불량품이나 부산물을 재활용하고, 원자재 사용량을 줄이는 공정 개선을 통해 폐기물을 감소시킨다. 셋째, 오염물질 저감이다. 공정에서 발생하는 배출가스, 폐수, 소음을 줄이고, 환경 친화적인 소재를 사용하는 것이다. 스마트팩토리 기술은 이러한 친환경 생산을 뒷받침한다. IoT 센서와 데이터 분석을 활용해 설비별 에너지 사용량을 실시간으로 모니터링하고, AI가 이상 패턴을 감지해 자동으로 조정한다. 이를 통해 낭비를 줄이고 탄소배출량을 정량적으로 관리할 수 있다. 또한, ESG(환경·사회·지배구조) 경