AI 기술은 이제 대기업만의 도구가 아니다. 중소 제조업도 디지털 기술을 활용하면 생산성, 품질, 비용 구조를 근본적으로 개선할 수 있다. 그러나 규모가 작은 기업일수록 기술 도입이 부담스럽고, 무엇부터 시작해야 할지 막막한 경우가 많다. AI 시대에 중소 제조업이 지속 성장하기 위해서는 작계 시작해 크게 성장하는 전략적 접근이 필요하다. 첫 번째 전략은 데이터 기반 경영 전환이다. AI를 활용하기 위해서는 먼저 데이터를 수집하고 관리할 수 있는 체계를 만들어야 한다. 설비 가동시간, 불량 정보, 작업시간, 재고 현황 등 기본적인 생산 데이터를 자동으로 기록하면 생산 흐름의 문제를 빠르게 파악할 수 있다. 중소기업은 이 단계만 구축해도 의사결정의 정확도가 크게 향상된다. 두 번째는 부분 자동화, 스마트화의 단계적 추진이다. 많은 기업이 전체 자동화를 목표로 하다가 비용 부담에 좌절한다. 대신 조립, 포장, 검사처럼 반복 작업이 많은 공정부터 자동화하면 적은 비용으로 높은 효과를 낼 수 있다. 이후 MES, IoT 센서 등 디지털 도구를 점차 확장하면 자연스럽게 스마트팩토리로 진화할 수 있다. 세 번째 전략은 인력의 디지털 역량 강화이다. 기술을 도입해도 사람
기업의 경쟁력은 빠르고 정확한 의사결정에서 나온다. 그러나 복잡한 시장 환경 속에서 ‘감(感)’에 의존한 판단은 한계에 이르렀다. 이제 경영의 중심에는 AI 데이터 기반 의사결정(Data-Driven Decision Making) 이 자리 잡고 있다. 이는 데이터를 수집하고 분석해, 객관적 근거를 바탕으로 경영 판단을 내리는 새로운 방식이다. AI 기반 경영은 단순히 보고서를 자동으로 만드는 수준을 넘어선다. 판매, 생산, 재고, 고객, 인력, 설비 등 기업의 전 영역에서 데이터를 수집하고, 이를 인공지능이 실시간으로 분석한다. 예를 들어, AI는 과거 판매 추세와 외부 요인을 결합해 미래 수요를 예측하고, 그 결과를 토대로 생산계획과 자재 조달 일정을 자동으로 제안한다. 이로써 기업은 불필요한 재고를 줄이고 납기를 단축할 수 있다. 또한 AI는 의사결정의 품질과 속도를 동시에 높인다. 과거에는 데이터 분석에 시간이 오래 걸려 기회가 지나가기 일쑤였지만, AI는 실시간 분석을 통해 즉각적인 판단을 가능하게 한다. 예를 들어, 특정 제품의 불량률이 상승하면 AI가 즉시 원인 후보를 제시하고, 관리자는 그 결과를 검토해 조치를 결정할 수 있다. 이처럼 사람은 ‘